164 research outputs found

    Sports ball aerodynamics: A numerical study of the erratic motion of soccer balls

    Get PDF
    The application of the commercial CFD code, FLUENT, to sports ball aerodynamics was assessed and a validated 3D analysis technique was established for balls that have been scanned with a 3D laser scanner or drawn in CAD. The technique was used to examine the effects of surface geometry on the aerodynamic behaviour of soccer balls by comparing the flow around different balls and predicting the aerodynamic force coefficients. The validation process included performing CFD studies on 3D smooth spheres and various soccer balls, and comparing the results to wind tunnel tests and flow visualisation. The CFD technique used a surface wrapping meshing method and the Reynolds Averaged Navier-Stokes approach with the realizable k-ε turbulence model, which was found to be able to predict the drag, lift and side force coefficients (CD, CL and CS) reliably, to compare the wake behaviour, and to give good pressure distributions near the stagnation point. The main limitations of the technique with the available computational resources were its inability to accurately predict boundary layer transition or growth, but despite this, several conclusions could be drawn regarding soccer ball aerodynamics. CD was not significantly different between balls. CL and CS were found to be significantly affected by the orientation of the ball relative to its direction of travel, meaning that balls kicked with low amounts of spin could experience quasi-steady lift and side forces and move erratically from side-to-side or up and down through the air. For different balls, CD, CL and CS were predicted and their variation with orientation entered into a modified trajectory simulation program. The erratic nature of this type of kick was found to vary with details of the surface geometry including seam size, panel symmetry, number, frequency and pattern, as well as the velocity and spin applied to the ball by the player. Exploitation of this phenomenon by players and ball designers could have a significant impact on the game. © 2008 Elsevier Ltd. All rights reserved

    Correlation of mechanical factors and gallbladder pain

    Get PDF
    Acalculous biliary pain occurs in patients with no gallstones, but is similar to that experienced by patients with gallstones. Surgical removal of the gallbladder (GB) in these patients is only successful in providing relief of symptoms to about half of those operated on, so a reliable pain-prediction model is needed. In this paper, a mechanical model is developed for the human biliary system during the emptying phase, based on a clinical test in which GB volume changes are measured in response to a standard stimulus and a recorded pain profile. The model can describe the bile emptying behaviour, the flow resistance in the biliary ducts, the peak total stress, including the passive and active stresses experienced by the GB during emptying. This model is used to explore the potential link between GB pain and mechanical factors. It is found that the peak total normal stress may be used as an effective pain indicator for GB pain. When this model is applied to clinical data of volume changes due to Cholecystokinin stimulation and pain from 37 patients, it shows a promising success rate of 88.2% in positive pain prediction

    Role of Hyperon Negative Energy Sea in Nuclear Matter

    Get PDF
    We have examined the contribution of the filled negative energy sea of hyperons to the energy/particle in nuclear matter at the one and two loop levels. While this has the potential to be significant, we find a strong cancellation between the one and two loop contributions for our chosen parameters so that hyperon effects can be justifiably neglected.Comment: 12 pages, latex, 1 simple figure attached at end (regular postscript

    Gadoxetate-enhanced abbreviated MRI is highly accurate for hepatocellular carcinoma screening.

    Get PDF
    The primary objective was to compare the performance of 3 different abbreviated MRI (AMRI) sets extracted from a complete gadoxetate-enhanced MRI obtained for hepatocellular carcinoma (HCC) screening. Secondary objective was to perform a preliminary cost-effectiveness analysis, comparing each AMRI set to published ultrasound performance for HCC screening in the USA. This retrospective study included 237 consecutive patients (M/F, 146/91; mean age, 58 years) with chronic liver disease who underwent a complete gadoxetate-enhanced MRI for HCC screening in 2017 in a single institution. Two radiologists independently reviewed 3 AMRI sets extracted from the complete exam: non-contrast (NC-AMRI: T2-weighted imaging (T2wi)+diffusion-weighted imaging (DWI)), dynamic-AMRI (Dyn-AMRI: T2wi+DWI+dynamic T1wi), and hepatobiliary phase AMRI (HBP-AMRI: T2wi+DWI+T1wi during the HBP). Each patient was classified as HCC-positive/HCC-negative based on the reference standard, which consisted in all available patient data. Diagnostic performance for HCC detection was compared between sets. Estimated set characteristics, including historical ultrasound data, were incorporated into a microsimulation model for cost-effectiveness analysis. The reference standard identified 13/237 patients with HCC (prevalence, 5.5%; mean size, 33.7 ± 30 mm). Pooled sensitivities were 61.5% for NC-AMRI (95% confidence intervals, 34.4-83%), 84.6% for Dyn-AMRI (60.8-95.1%), and 80.8% for HBP-AMRI (53.6-93.9%), without difference between sets (p range, 0.06-0.16). Pooled specificities were 95.5% (92.4-97.4%), 99.8% (98.4-100%), and 94.9% (91.6-96.9%), respectively, with a significant difference between Dyn-AMRI and the other sets (p < 0.01). All AMRI methods were effective compared with ultrasound, with life-year gain of 3-12 months against incremental costs of US$ < 12,000. NC-AMRI has limited sensitivity for HCC detection, while HBP-AMRI and Dyn-AMRI showed excellent sensitivity and specificity, the latter being slightly higher for Dyn-AMRI. Cost-effectiveness estimates showed that AMRI is effective compared with ultrasound. • Comparison of different abbreviated MRI (AMRI) sets reconstructed from a complete gadoxetate MRI demonstrated that non-contrast AMRI has low sensitivity (61.5%) compared with contrast-enhanced AMRI (80.8% for hepatobiliary phase AMRI and 84.6% for dynamic AMRI), with all sets having high specificity. • Non-contrast and hepatobiliary phase AMRI can be performed in less than 14 min (including set-up time), while dynamic AMRI can be performed in less than 17 min. • All AMRI sets were cost-effective for HCC screening in at-risk population in comparison with ultrasound

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    On understanding multi-instrument Rosetta data of the innermost dust and gas coma of comet 67P/Churyumov-Gerasimenko - results, strengths, and limitations of models

    Get PDF
    Numerical models are powerful tools for understanding the connection between the emitted gas and dust from the surface of comets and the subsequent expansion into space where remote sensing instruments can perform measurements. We will present such a predictive model which can provide synthetic measurements for multiple instruments on board ESA's Rosetta mission to comet 67P/Churyumov-Gerasimenko (hereafter 67P). We will demonstrate why a multi instrument approach is essential and how models can be used to constrain the gas and dust source distribution on the surface

    Production of a dual-species Bose-Einstein condensate of Rb and Cs atoms

    Full text link
    We report the simultaneous production of Bose-Einstein condensates (BECs) of 87^{87}Rb and 133^{133}Cs atoms in separate optical traps. The two samples are mixed during laser cooling and loading but are separated by 400μ400 \mum for the final stage of evaporative cooling. This is done to avoid considerable interspecies three-body recombination, which causes heating and evaporative loss. We characterize the BEC production process, discuss limitations, and outline the use of the dual-species BEC in future experiments to produce rovibronic ground state molecules, including a scheme facilitated by the superfluid-to-Mott-insulator (SF-MI) phase transition

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects

    Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17 : analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Across low-income and middle-income countries (LMICs), one in ten deaths in children younger than 5 years is attributable to diarrhoea. The substantial between-country variation in both diarrhoea incidence and mortality is attributable to interventions that protect children, prevent infection, and treat disease. Identifying subnational regions with the highest burden and mapping associated risk factors can aid in reducing preventable childhood diarrhoea. Methods We used Bayesian model-based geostatistics and a geolocated dataset comprising 15 072 746 children younger than 5 years from 466 surveys in 94 LMICs, in combination with findings of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, to estimate posterior distributions of diarrhoea prevalence, incidence, and mortality from 2000 to 2017. From these data, we estimated the burden of diarrhoea at varying subnational levels (termed units) by spatially aggregating draws, and we investigated the drivers of subnational patterns by creating aggregated risk factor estimates. Findings The greatest declines in diarrhoeal mortality were seen in south and southeast Asia and South America, where 54·0% (95% uncertainty interval [UI] 38·1–65·8), 17·4% (7·7–28·4), and 59·5% (34·2–86·9) of units, respectively, recorded decreases in deaths from diarrhoea greater than 10%. Although children in much of Africa remain at high risk of death due to diarrhoea, regions with the most deaths were outside Africa, with the highest mortality units located in Pakistan. Indonesia showed the greatest within-country geographical inequality; some regions had mortality rates nearly four times the average country rate. Reductions in mortality were correlated to improvements in water, sanitation, and hygiene (WASH) or reductions in child growth failure (CGF). Similarly, most high-risk areas had poor WASH, high CGF, or low oral rehydration therapy coverage. Interpretation By co-analysing geospatial trends in diarrhoeal burden and its key risk factors, we could assess candidate drivers of subnational death reduction. Further, by doing a counterfactual analysis of the remaining disease burden using key risk factors, we identified potential intervention strategies for vulnerable populations. In view of the demands for limited resources in LMICs, accurately quantifying the burden of diarrhoea and its drivers is important for precision public health
    corecore